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Abstract

This paper focuses on the relationship between streamflow in the Colorado River and climate
indicators such as the Multivariate ENSO Index (MEI) and tree-ring data. Improved procedures
for streamflow reconstruction using tree-ring information are presented. Streamflow
reconstruction is important for identification of historic severe-sustained droughts. Traditionally,
Principal Components Analysis (PCA) and stepwise regression are used to form a transfer
function (i.e.. tree-ring information to reconstruct streamflow. However, PCA has several
procedural choices that may result in very different reconstructions. This study assesses the
different procedures in PCA-based regression and suggests alternative procedures for selection
of variables and principal components. Cross validation statistics are presented as an alternative
for independently testing and identifying the optimal model. The results show that a
parsimonious model with a low mean square error can be obtained by using strict rules for
principal component selection and cross validation statistics. Additionally, the procedure
suggested in this study results in a model that is physically consistent with the relationship
between the predictand and the predictor. The alternative PCA-based regression models
presented here are applied to the reconstruction of the upper Colorado River Basin streamflow
and compared with results of a previous reconstruction using traditional procedures. The results
have implications for determining the worst scenario to be used for planning and the allocation
of water supply in the Colorado River basin during a severe-sustained drought.

Introduction

The Colorado River basin 1s the most important river basin in the southwestern U.S. in terms of
water resource usage. The semiarid nature of the basin makes it extremely sensitive to the impact
of severe-sustained droughts to water resources management. In the Colorado River basin, the
streamflow conditions at Lee’s Ferry (the divide between the Upper and Lower Colorado River
basin) are a good representation of the hydrologic conditions for the basin (See Figure 1).
Severe-sustained droughts are attributed to long-term variations in the climate that cause a
precipitation deficit for a large area.
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Figure 1 Annual naturalized flow at Lee’s Ferry (Arizona) in million acre feet (maf)

One of the well know climate variations is the El Nifio-Southern Oscillation (ENSQO) which
refers to the interaction of El Nifio, defined as the periodic large scale warming of the central-
gastern equatorial Pacific Ocean, with the Southern Oscillation, the large scale climate vanations
existing in the tropical Pacific. The ENSO phenomenon causes, simultaneously, droughts in
Australia, New Zealand, and Southern Africa and devastating floods in North America, Peru, and
Ecuador. The warm phase of ENSO is called "El Nifio," while the cold phase is called La Niiia.
An indicator of ENSO conditions is the Multivariate ENSO Index (MEI) developed by Wolter
(1987). The MEI is positive during El Nifio events and negative during La Nifia events. Figure 2
presents typical MEI values for El Nifio and La Nifia events.

The hydrologic variations in the Western U.S. due to ENSO have been documented by
researchers such as: Redmond and Koch, 1991; Cayan and Webb, 1992; Guetter and
Georgakakos, 1996; Piechota and Dracup, 1996; Piechota et al., 1997; and Piechota and Dracup,
1999. The typical streamflow conditions at Lee’s Ferry during El Nifio and La Nifa conditions
are shown in Figure 2. Figure 2(a) shows that the streamflow conditions are above normal in the
summer and autumn of the El Nifio event, and continues above normal through the summer after
the event. These observations are based on seven El Nifio events that occurred from 1949 to
1999. Evaluating data from eight La Nifa events from 1949 to 1999, Figure 2(b) shows that the
Colorado River experiences below normal streamflow in the spring, summer, and autumn after a
La Nifia event. The occurrence of ENSO events is not the only climate mechanism that causes
droughts n the Colorado River basin. Researchers are actively investigating other causes such as
the Pacific Decadal Oscillation and the Pacific North American atmospheric circulation patterns.
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Figure 2 The average Multivariate ENSO Index (MEI) versus monthly streamflow at
Lee’s Ferry during a 24 month period associated with (a) El Niiio events and (b)
La Nifa events. The first 12 months are designated the El Nifio (La Niia) vear.

The evaluation of tree-ring data allows hydroclimate records such as precipitation and
streamflow to be extended back as far back as the age of the tree. Over the past twenty vears,
several researchers have studied severe sustained droughts on the Colorado River using tree-ring
analysis (e.g., Michaelson et al., 1990; Meko et al., 1993; Tarboton, 1995; Meko et al., 1997).

(8
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These studies are based largely on tree-ring data collected in the study by Stockton and Jacoby
(1976). The most severe and sustained drought apparent from tree-ring records took place from
approximately 1573 to 1592 A.D. (Meko et al., 1995), a 20 year period where the average flow
dropped to 10.95 MAF compared to the long-term (1896-1990) recorded mean of 15.03 MAF
and to the overall reconstructed mean of 13.95 MAF (Stockton and Jacoby. 1976). The drop
reflected by these figures 1s yet more disturbing if we consider that the Colorado River Compact,
m 1922, originally over-estimated the annual average flow, basing its water allocations on the
availability of 16.4 MAF per year.

The accuracy of the reconstructed streamflows can be improved by selecting models with better
predictive (reconstructive) skill and most physically-consistent using parameters obtained from
independent testing techniques (Garen, 1992). Recent techniques allow us to measure this
predictive skill and the accuracy of both the resulting flow estimation and drought parameters
derived from the reconstructed flow. Previous reconstructions of Colorado River flow have used
the 1896/1914 to 1963 record of flow at Lees Ferry (Stockton and Jacoby 1976). There are now
at least 30 years of additional flow data that can be added to the original period of instrumental
record to calibrate and validate tree-ring models of Colorado River Flow. Thus, the focus of this
study is to present new procedures for reconstruction of streamflow using tree-ring data.

Tree-Ring Data

The tree ring index chronologies for the Upper Colorado River basin were obtained from the
NOAA (1997) International Tree Ring Data Bank. Location of the chronologies can be found in
Figure 3 and the site characteristics are listed in Table 1. The common streamflow data set used
for streamflow model calibrations in the Upper Colorado River Basin is the Lee’s Ferry record
presented in Figure 1. An annual unimpaired streamflow record for Lee’s Ferry from 1896 to
1995 was obtained from the USBR (1994). However, only data from 1914 to 1963 was used due
to the following reasons. For consistency, this study only uses streamflow data up to 1963 for
calibration, to allow comparison of our results to the study by Stockton and Jacoby (1976).
Second, it should be noted that the streamflow data from 1896 to 1913 were extrapolated from
distant stations and are not as reliable as the data after 1913. The data from 1914 to 1922 were
compiled from the three main tributaries of the Upper Colorado River Basin and are judged to be
reliable for hydrologic studies. In 1923, a stream gauge was installed at Lee's Ferry.

Methods for Streamflow Reconstruction

A common problem in streamflow reconstruction is the presence of multicollinearity or linear
codependancy among the predictors (i.e., tree-ring data). Because of the high autocorrelation of
tree ring chronologies, the inclusion of lagged time series in dendroclimatological reconstruction
models increases the possibility of having problems associated to multicollinearity on the resuits
of these models. Linear regression (commonly used for streamflow reconstruct), however, is
based on the assumption that the independent variables are not significantly correlated. When
highly intercorrelated predictors are used in a multiple linear regression model, multicollinearity
can become the cause of statistically imprecise and unstable estimates of regression coefficients,
mcorrect rejection of variables, and numerical inaccuracies in computing the estimates of the
model’s coefficients. In addition, including too many variables may result in an undesirable
effect of "over-fitting" the model, making it able to predict even the smallest variations from
noise in the observed data, but with a low predictive skill.
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Figure 3 The locations of the 17 tree ring site chronologies in the Upper Colorado River
basin used in this study (from Hidalgo et al., 2000)

Table 1 List of Tree Ring Chronologies used in this study
Site w ELEV. correl.
Number'SITE NAME, STATE 'YEAR| (m) | criterion |S.D. |rlagl
1 Unita Mountains A, UT 1972 13353 0.14 10.14 10.67
2 IGros Ventre, WY 01972 12179 0.17 10.28 |0.47
3  IChicago Creek, CO | 1965 |2835 0.22 10.39 |0.26
4  |New North Park, CO 1965 2469 0.31 10.37 10.54
5 UhlHill, WY 1972 12225 0.36  10.29 10.52
6 Black Canyon, CO 1965 2426 0.41 10.35 0.52
7  |Wind River Mtns. D, WY 1972 12500 047 10.26 10.51
8 Upper Gunnison, CO L 1965 2530 0.54 10.34 10.38
9 Mammoth Creek, UT . 1990 [2590 0.56 10.37 10.17
10 |La Sal Mountains A, UT ' 1972 [2323 0.57 10.33 10.42
11 Bobcat Canyon, CO - 1972 12042 0.62 10.43 10.25
12 NNine Mile Canyon, UT ' 1965 (1920 0.64 [0.41 |0.41
13  Navajo Mountain, UT 1972 2286 0.66 1[0.44 (0.21
14  [Unita Mountains D, UT 1972 2289 0.69 10.32 10.46
15 [Eagle, CO £ 1965 1951 0.69 10.35 10.62
16 iSch. Old Tree #1, CO 1 1964 12103 0.69 10.45 10.30
17 [|Eagle East, CO 1965 2164 0.77 (0.29 [0.34

Correl. Criterion is the correlation between the tree ring index and streamflow; S.D. 1s the
standard deviation; and rlagl is the lag 1 autocorrelation coefficient.
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Principal Component Analysis (PCA) offers an alternative to linear regression of the tree-ring
predictor variables. In PCA. the original data set can be transformed into linear combinations of
the original variables to create a new set of variables or principal components {PCs) that are
independent of one another (i.e., orthogonal). If there 1s a high degree of multicollinearity in the
data set. most of the variance can be explained with a fewer number of PCs than ornginal
variables. The PCs can also be used as predictors in a regression model, removing
multicollinearity problems among the independent variables.

In the case of streamflow reconstructions using tree ring chronologies, the number and selection
of which PCs and predictors to be included in the final model, as well as deciding whether or not
to rotate the PCs must be carefully evaluated. Hidalgo et al. (2000) present improved procedures
for making these decisions. Below 1s a summary of these procedures. A detailed explanation can
be found in Hidalgo et al. (2000).

Component Selection

The first step in PCA is to preselect the number of components that will be included in the
regression part of the model. Several truncation procedures have been developed for identifying
the significant modes from a PCA. In the present study, the critical eigenvalue rule (Kaiser,
1958) is used for PCs rotation. The critical eigenvalue rule keeps only the PCs that have an
eigenvalue equal to or greater than one (corresponding to the amount of information contained in
a single variable).

Traditionally, stepwise regression is then used to select the PCs that will be part of the final
regression model. An undesirable effect of stepwise regression 1s that it allows selection of non-
consecutive PCs (Garen, 1992). For example, the first, second, fifth, and tenth PCs could be
selected for a regression model according to stepwise regression procedures. The skipping of
PCs may result in regression coefficients for some of the original predictor variables that have
the opposite sign of their initial correlation with the predictand. A model of this type may give
results that are neither consistently accurate over time nor conceptually acceptable. Skipping PCs
also suggests that there are major modes of variability in the data set that are unrelated to the
dependent regression variable. If this is the case, it would be preferable for the variables that
represent this variability to be removed from the analysis.

Alternative for Component Selection

Garen (1992) gives an alternative procedure to stepwise regression for PCs selection. This
procedure results in a more parsimonious model that better represents the physical system and
has better predictive skill than a model created using stepwise regression. This procedure uses
the t-test and a “sign test” as the criteria for retaining variables. The t-test is used to test the
significance of the coefficient of the predictor variable (PC) in the regression equation. The sign
test is passed if the algebraic signs of the regression coefficients of the PCs expressed in terms of
the original variables match the algebraic signs of the correlation coefficients of these original
variables with the dependent variable.
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Cross Validation for Model Calibration/Verification

A technique for improved overall accuracy of regression models and improved independent
testing 1s cross validation. A model with improved overall accuracy can be formed by
minimizing the cross validation standard error (CVSE) defined as:

E(J"f _ﬁ(f))3
CVSE =& (1)
n—p

where y; 1s the observed streamflow for year i; v () 1s the fitted response of the i-th vear

computed from the fit with the /-th observation removed. # is the number of years in the data set
and p 1s the number of regression coefficients.

The CVSE is used as an objective measure to optimize the different PCA-based models tested in
this study. The algorithm used for variable selection for each of the alternative models is shown
in Figure 4 of Hidalgo et al. (2000). This algorithm determines the model as well as the subset of
tree ring variables that has the highest skill (lowest CVSE). This search procedure is similar to
the one used by Garen (1992), although it may not necessarily find the global optimum of all
combinations of variables, it rewards near-optimal parsimonious models.

Results for Lee’s Ferry Streamflow Reconstruction

The results of the reconstruction of Lee’s Ferry streamflow data using various models are
presented in Table 2. The PCs and the variables that are used to form the different PCs are also
shown in the first and last columns. There are a total of 17 possible variables in this section,
which corresponds to the number of tree ring sites. The “complete’” model (using all variables) is
shown as a comparison with more parsimonious models for each of the alternative procedures. In
all cases, the complete model had a higher CVSE than the other models showing that the
inclusion of more variables does not necessarily improve the predictive skill of the model.

All models based on the Garen (1992) approach were found to retain only the first PC. This
suggests that the size of the Upper Colorado River Basin is small enough that the climate signal
common to all variables belongs to a single climate regime that influences most of the basin. In
contrast, the stepwise regression method selected one to four PCs.

Truncation of the PCs did not influence the models based on the Garen (1992) approach, because
this type of model used only the first PC. For stepwise regression, however, better results are
obtained when all the PCs (i.e., no truncation) are considered in the model. The best models
using the Garen (1992) methodology is obtained by using unrotated PCs. In contrast, the
stepwise regression approach gives better results using untruncated rotated PCs. This is logical
since the rotation of the PCs distributes the variance of the original time series more equally
among the PCs. The unrotated solution has a large portion of the variance in the first PC, and the
amount of variance in the following PCs drops off much faster than in the rotated solution. The
rotation of PCs diminishes the high contribution placed on the first PC, and this affects the GA
approach which favors the first PC. The opposite effect is observed in the stepwise regression
selection, which gives importance to some of the latter PCs.

Copyright ASCE 2004 World Water Congress 2001

Downloaded 15 Apy 2008.10 182,58 180 41, Redistridution subject to ASCE Heenge of copynght, ses hiipuirvww ascelibrary.org/



The untruncated rotated stepwise regression model (Model F in Table 2) has the lowest CVSE
12590.34 million cubic meters per year] among all the models; although, it is not the most
parsimonious model (Table 2). The method suggested by Garen (1992) selected the model with
the fewest variables (one less variable than the stepwise regression) and had a CVSE just slightly
higher (2659.42 million cubic meters per year) than best stepwise regression model (2590.34
million cubic meters per year).

Table 2 Summary of the Results for Various Streamflow Reconstruction Meodels

CVSE Explained.
PCs x10°m’ Variance Tree Ring Sites (Variables)
Model A: Stepwise and Unrotated

1 3189.82 0.734 17 14 13
1 3941.02 0.640 l1to17

Model B: Stepwise and Rotated
1.2 2640.91 0.790 17 14 13 6

24.8 4013.79 0.744 1to17
Models C and G: Garen (1992) and Unrotated
1 2659.42 0.771 17 14 13
1 3770.79 0.680 1to17
Models D and H: Garen (1992) and Rotated
1 3189.82 0.734 17 14 13
1 3941.02 0.640 1to17
Model E: Stepwise and Unrotated

1.3 2591.57 0.798 17 16 14 13 5
1.5 3863.31 0.722 1to17

Model F': Stepwise and Rotated
1.3 2590.34 0.795 17 14 13 6

249,13 3704.19 0.806 1to17

Comparison with Stockton and Jacoby’s Reconstruction

The procedures described previously were used to reconstruct Lee’s Ferry streamflow and to
compare it with the reconstruction done by Stockton and Jacoby (1976) with a stepwise
regression model that allowed skipping of PCs. A comparison between the streamflow
reconstructions from the traditional stepwise regression model and the model formed with the
procedures from this study is shown in Figure 4.

The Stockton and Jacoby (1976) model used six PCs that were not consecutive. It is encouraging
that our estimate of the root mean squared error (2159 x 10° m*) and explained variance (0.82)
for the calibration over the years 1914 to 1961 showed that our model has a better fit than the
Stockton and Jacoby (1976) model that has a root mean squared error of 4712 x 10°m’ and an
explained variance of 0.74. Moreover. the six PCs used in the Stockton and Jacoby (1976) study
are composed of 68 variables (representing 17 tree ring chronologies times 4 lags) and there may
be some duplicate information that artificially inflates the real predictive skill of the model.
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In Figure 4. it is clear that our model responds with more intensity to below average streamflow
(droughts) than the Stockton and Jacoby (1976) model. It is encouraging that both
reconstructions show that the lowest streamflow occurred in the 15907, 1670, and 1780%s. In
addition. an extended low flow period occurred from the 1880’s to the 1910’. This suggests a
near-centennial return period of extreme drought events in this region.

25
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z 3 — 10 year moving average (This study)
% 5 — 10 year moving average (Stackton and Jacoby, 1976)
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Figure 4 Comparison of the reconstruction results obtained using the Stockton and
Jacoby (1976) approach and the model from this study. Annual streamflow is
expressed in billion cubic meters at Lee’s Ferry.

Conclusions

The comparison of PCA-based regression techniques presented in this paper is intended to
provide insights to the relative accuracy of these models for streamflow reconstruction using tree
ring data. Garen’s (1992) methodology for PCs selection resulted in the most parsimonious
models, having a low CVSE. This method also produces models that are more physically
consistent than those calibrated using stepwise regression. In stepwise regression, the undesirable
effect of PCs skipping can lead to regression coefficients that are opposite in sign to the physical
relationship between the predictor and predictand. It was also found that the minimization of the
CVSE is a good tool for determining the most parsimonious model, with a low root mean square
error (RMSE), while remaining consistency with the underlying physical processes.

A comparison of the optimized model in this study with that of the Stockton and Jacoby’s (1976)
reconstruction of Lee's Ferry streamflow shows that both models identify the same dry periods;
however. the model developed in this study estimates with more intensity the extreme dry
periods. It is not clear whether the approach suggested here is superior to the traditional stepwise
regression approach; however, the differences in the streamflow reconstruction that each
approach gives is worthy of additional study. These differences may be very important for the
future allocation of water supply in the Colorado River basin.
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